Iterative weighted risk estimation for nonlinear image restoration with analysis priors
نویسندگان
چکیده
Image acquisition systems invariably introduce blur, which necessitates the use of deblurring algorithms for image restoration. Restoration techniques involving regularization require appropriate selection of the regularization parameter that controls the quality of the restored result. We focus on the problem of automatic adjustment of this parameter for nonlinear image restoration using analysis-type regularizers such as total variation (TV). For this purpose, we use two variants of Stein’s unbiased risk estimate (SURE), Predicted-SURE and Projected-SURE, that are applicable for parameter selection in inverse problems involving Gaussian noise. These estimates require the Jacobian matrix of the restoration algorithm evaluated with respect to the data. We derive analytical expressions to recursively update the desired Jacobian matrix for a fast variant of the iterative reweighted least-squares restoration algorithm that can accommodate a variety of regularization criteria. Our method can also be used to compute a nonlinear version of the generalized cross-validation (NGCV) measure for parameter tuning. We demonstrate using simulations that Predicted-SURE, Projected-SURE, and NGCV-based adjustment of the regularization parameter yields near-MSE-optimal results for image restoration using TV, an analysis-type 1-regularization, and a smooth convex edge-preserving regularizer.
منابع مشابه
Joint estimation of parameters and hyperparameters in a Bayesian approach of solving inverse problems
In this paper we propose a joint estimation of the parameters and hyperparameters (the parameters of the prior law) when a Bayesian approach with Maximum Entropy (ME) priors is used to solve the inverse problems which arise in signal and image reconstruction and restoration problems. In particular we propose two methods: one based on the Expectation Maximization (EM) algorithm who aims to nd th...
متن کاملWeber’s Law and Weberized TV Restoration
Most conventional image processors consider little the influence of human vision psychology. Weber’s Law in psychology and psychophysics claims that human’s perception and response to the intensity fluctuation of visual signals are weighted by the background stimulus , instead of being plainly uniform. This paper attempts to integrate this well known perceptual law into the classical total vari...
متن کاملApproximate maximum likelihood hyperparameter estimation for Gibbs priors
The parameters of the prior, the hyperparameters, play an important role in Bayesian image estimation. Of particular importance for the case of Gibbs priors is the global hyperparameter, beta, which multiplies the Hamiltonian. Here we consider maximum likelihood (ML) estimation of beta from incomplete data, i.e., problems in which the image, which is drawn from a Gibbs prior, is observed indire...
متن کاملIterative image restoration using nonstationary priors.
In this paper, we propose an algorithm for image restoration based on fusing nonstationary edge-preserving priors. We develop a Bayesian modeling followed by an evidence approximation inference approach for deriving the analytic foundations of the proposed restoration method. Through a series of approximations, the final implementation of the proposed image restoration algorithm is iterative an...
متن کامل